非 Transformer 架构 AI 模型 Liquid 问世


IT之家 10 月 2 日消息,去年刚成立的 Liquid AI 公司于 9 月 30 日发布了三款 Liquid 基础模型(Liquid Foundation Models,LFM),分别为 LFM-1.3B、LFM-3.1B 和 LFM-40.3B。这些模型均采用非 Transformer 架构,号称在基准测试中凌驾同规模的 Transformer 模型。

IT之家注意到,目前业界在深度学习和自然语言处理方面主要使用 Transformer架构,该架构主要利用自注意力机制捕捉序列中单词之间的关系,包括 OpenAI 的 GPT、Meta 的 BART 和谷歌的 T5 等模型,都是基于 Transformer 架构。

而Liquid AI 则反其道而行之,其 Liquid 基础模型号称对模型架构进行了“重新设想”,据称受到了“交通信号处理系统、数值线性代数”理念的深刻影响,主打“通用性”,能够针对特定类型的数据进行建模,同时支持对视频、音频、文本、时间序列和交通信号等内容进行处理。

Liquid AI 表示,与 Transformer 架构模型相比 LFM 模型的RAM用量更少,特别是在处理大量输入内容场景时,由于 Transformer 架构模型处理长输入时需要保存键值(KV)缓存,且缓存会随着序列长度的增加而增大,导致输入越长,占用的RAM越多。

而 LFM 模型则能够避免上述问题,系列模型能够有效对外界输入的数据进行压缩,降低对硬件资源的需求,在相同硬件条件下,这三款模型相对业界竞品能够处理更长的序列。

参考 Liquid AI 首批发布的三款模型,其中 LFM-1.3B 专为资源受限的环境设计,而 LFM-3.1B 针对边缘计算进行了优化,LFM-40.3B 则是一款“专家混合模型(MoE)”,该版本主要适用于数学计算、交通信号处理等场景。

这些模型在通用知识和专业知识的处理上表现较为突出,能够高效处理长文本任务,还能够处理数学和逻辑推理任务,目前该模型主要支持英语,不过也对中文、法语、德语、西班牙语、日语、韩语和阿拉伯语提供有限支持。

根据 Liquid AI 的说法,LFM-1.3B 在许多基准测试中击败了其他 1B 参数规模的领先模型,包括苹果的 OpenELM、Meta 的 Llama 3.2、微软的 Phi 1.5 以及 Stability 的 Stable LM 2,这标志着首次有非 GPT 架构的模型明显超越了 Transformer 模型。

而在 LFM-3.1B 方面,这款模型不仅能够超越了 3B 规模的各种 Transformer 模型、混合模型和 RNN 模型,甚至还在特定场景超越上一代的 7B 和 13B 规模模型,目前已战胜谷歌的 Gemma 2、苹果的 AFM Edge、Meta 的 Llama 3.2 和微软的 Phi-3.5 等。

LFM-40.3B 则强调在模型规模和输出质量之间的平衡,不过这款模型有所限制,虽然其拥有 400 亿个参数,但在推理时仅启用 120 亿个参数,Liquid AI 声称进行相关限制是因为模型出品质量已经足够,在这种情况下对相应参数进行限制“反而还能够提升模型效率、降低模型运行所需的硬件配置”。

相关文章推荐阅读:
  • 防盗门非标门厂家排名(防盗门非标门价格)
  • 蔚来进入中东、北非市场,将在阿联酋建立技术研发中心并研发新车
  • 郑钦文:非常非常非常期待和张雨霏去海上漂一周
  • 非农日道指新高,中概涨3%全周涨近12%,美债大跌,油价周涨
  • 品牌非标入户防盗门排名(非标门品牌排行前十名)
  • 恭喜朱一龙!
    上一篇 2024年10月05日
    美国国务院:组织了一次撤侨行动,将100多名美国公民及其亲属
    下一篇 2024年10月05日
    版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 1094474542@qq.com 举报,一经查实,本站将立刻删除。

    相关推荐